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We give a lower estimate of the Hausdorff dimension for attractors which can
be obtained by an overlapping construction.
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1. INTRODUCTION AND NOTATION

Let (X, r) be a Polish space, i.e., a separable complete metric space. By
B(x, r) we denote the closed ball in X with center at x and radius r. For
A …X, A ]”, we denote by diam A the diameter of A. As usual, R stands
for the set of all reals and N for the set of all positive integers. Moreover
set R+=[0,+.).

For A …X, s > 0 and d > 0 we define

H s
d(A)=inf C

.

i=1
(diam Ui) s,

where the infimum is taken over all countable covers {Ui} of A such that
diam Ui [ d. Then

H s(A)=lim
dQ 0

H s
d(A)



is Hausdorff s-dimensional measure. The Hausdorff dimension of A is
defined by the formula

dimH A=inf{s > 0:H s(A) <.}.

Unfortunately, the Hausdorff dimension of even relatively simple sets is
rather hard to calculate.

Given a set {S1,..., SN} of strictly contractive mappings Si : XQX, we
define a mapping F on the subsets of X, by the formula

F(A)=0
N

i=1
Si(A) for A …X.

It is well known (see [H]) that there exists a unique non-empty compact set
K such that F(K)=K and for every nonempty compact subset A of X the
sequence {Fn(A)} converges in the Hausdorff metric to the set K. The set
K is called attractor or fractal of the iterated function system {S1,..., SN}.
From the point of applications it is convenient to have estimates of the
Hausdorff dimension of the set K. Upper bounds can easily be obtained,
while lower bounds are much more difficult to establish. Here we obtain an
estimate using the mass distribution principle formulated by Frostman in
1935 (see [Fr]) and a version of Lasota’s lemma.

We say that the system {S1,..., SN} satisfies the Moran condition if the
sets S1(K),..., SN(K) are pairwise disjoint, where K is the attractor of the
system. If the system {S1,..., SN} satisfies the Moran condition and

r(Si(x), Si(y)) \ lir(x, y) for x, y ¥X and i=1,..., N, (1)

then the Hausdorff dimension of the attractor K of this system (see
[M, H]) is greater than or equal to the unique number d given by

ld1+·· ·+ldN=1. (2)

Moreover, if S1,..., SN are similarities with the scaling factors l1,..., lN,
respectively, then the Hausdorff dimension of K is equal to d. If X=Rd,
this remains true if the sets Si(K), i=1,..., N, have ‘‘small overlap’’. To
define this we use so called open set condition. We say that the system
{S1,..., SN} satisfies the open set condition if there exists a nonempty open
set G such that the sets S1(G),..., SN(G) are pairwise disjoint and Si(G) … G
for i=1,..., N. Since the intersection of G and K may be empty, the open
set condition does not imply the Moran condition. There are some results
(see [F], [PS], [Si]) which show that for a family of similarities with
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overlaps, the Hausdorff dimension is almost surely equal to d. However,
the case with overlaps has not been completely analysing. In this Note we
give a contribution to this.

2. RESULTS

First we recall the mass distribution principle (see [Fr, O, P]).

Proposition 1. Let Z be a subset of X and m a Borel finite measure
on Z. Assume that there exist numbers s > 0 and C > 0 such that for
m-almost all x ¥ Z

m(B(x, r)) [ Cr s for r > 0.

Then

dimH Z \ s.

An essential tool in our proof is the following lemma concerning
functional inequalities, based on an idea of A. Lasota (see [LM]).

Lemma 2. Let li, pi ¥ (0, 1) for i=1,..., N be given. Assume that
;N
i=1 pi=1. Let L be a family of sequences of integers (i1,..., im), m <N,

such that 1 [ i1 < · · · < im [N. Let F: R+Q R+ be a bounded function.
Suppose that there exists r0 > 0 such that

F(r) [ max
(i1,..., im) ¥ L

C
m

k=1
pikF(r/lik ) for r ¥ (0, r0]. (3)

Then for s > 0 satisfying

max
(i1,..., im) ¥ L

C
m

k=1

pik
l sik
=1, (4)

there exists C > 0 such that

F(r) [ Cr s (5)

for every r > 0.

Proof. Let L, F and r0 be as in Lemma 2. Fix s > 0 such that (4)
holds. Since F is bounded, there exists C > 0 such that (5) holds for every
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r \ r0. Let i0 ¥ {1,..., N} be such that li0=max1 [ i [N li. We claim that (5)
holds for every r \ lni0 r0, where n is an arbitrary nonnegative integer. To
prove this we will use induction. For n=0 inequality (5) is true for every
r \ r0 by the choice of C. Suppose now that (5) holds for r \ lni0 r0. From
this and the inequality r/li \ l

n
i0 r0 for r \ l

n+1
i0 r0, i=1,..., N, we have

F(r) [ max
(i1,..., im) ¥ L

C
m

k=1
pikF(r/lik ) [ max

(i1,..., im) ¥ L
C
m

k=1
pikCr

s/l sik

=Cr s max
(i1,..., im) ¥ L

C
m

k=1
pik/l

s
ik .

Consequently, from (4) it follows that (5) holds for every r \ ln+1i0 r0. Thus
(5) holds for every r \ lni0 r0 and every n ¥N. Since li0 < 1 it follows that (5)
holds for every r > 0. The proof is complete. L

We are now in a position to formulate the main theorem:

Theorem 3. Let S1,..., SN be strictly contractive mappings satis-
fying (1) with li ¥ (0, 1), i=1,..., N. Let K be the attractor of the system
{S1,..., SN}. Assume that

3
N

i=1
Si(K)=”. (6)

Let L be the family of all sequences of integers (i1,..., im) such that
1 [ i1 < · · · < im [N and

3
m

k=1
Sik (K) ]”.

Then

dimH K \ s,

where s > 0 satisfies

max
(i1,..., im) ¥ L

C
m

k=1
ld−sik =1

for d given by (2).
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Proof. For x ¥K define

Ix={i ¥ {1,..., N}: x ¨ Si(K)}.

From (6) it follows that the set Ix is nonempty. Consider the function
j: KQ R+ given by

j(x)=max
y ¥K

min
i ¥ Iy
r(x, Si(K)).

It is easy to verify that j is continuous and positive. Thus

r0= inf
x ¥K
j(x) > 0.

Consider the probabilistic iterated function system (S1,..., SN; p1,..., pN)
with pi=ldi , i=1,..., N, where d is given by (2). It is well known (see
[LM, Sz]) that there exists a Borel probability measure m such that the
support of m is equal to K and

m(A)=C
N

i=1
ldi m(S

−1
i (A)) (7)

for every Borel subset A of X. Simple calculation shows that S−1i (B(x, r)) …
B(S−1i (x), r/li) for i=1,..., N. Further there exists y ¥K such that
S−1i (B(x, r)) 5K=” for i ¥ Iy and r [ r0. From this and (7) it follows that

m(B(x, r)) [ C
i ¥ {1,..., N}0Iy

ldi m(B(S
−1
i (x), r/li)) for r ¥ (0, r0]. (8)

Consider the function F: R+Q R+ given by

F(r)=sup
x ¥K
m(B(x, r)).

From (8) it follows that

F(r) [ max
(i1,..., im) ¥ L

C
m

k=1
pikF(r/lik ) for r [ r0.

By Lemma 2 there is C > 0 such that

F(r) [ Crs for r > 0,

where s > 0 satisfies condition (4) with pi=ldi for i=1,..., N. Theorem 3
now follows from Proposition 1. L
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Remark. It is easy to see that if we replace in (6) the attractor K by a
set K0 such that 1N

i=1 Si(K0) …K0, Theorem 3 remains true. Moreover,
observe that condition (6) is not restrictive. In fact, if (6) is not satisfied, the
system may admit only a one point attractor and clearly dimHK=0.

Using Theorem 3 we can obtain the following:

Corollary 4. Let S1,..., SN be strictly contractive mappings satis-
fying (1) with li ¥ (0, 1), i=1,..., N. Let K be the attractor of the system
{S1,..., SN}. If {S1,..., SN} satisfies the Moran condition, then

dimH K \ d,

where d is given by (2).

Proof. It is enough to note that L={{1},..., {N}}. L

The following example shows that our theorem can be used in the case
when the obvious approach of selecting a subset of the Si for which Si(K)
are pairwise disjoint and applying the usual formula due to Moran (see [H],
[M], [Mo]) breaks down.

Example. Consider the affine transformations Si : R2Q R2 defined by
the condition

SiR
x

y
S=AiR

x

y
S+ai for i=1, 2, 3,

where

A1=R
0.35 0.35

−0.35 0.35
S , A2=R

0.05 0.25

0.55 0.45
S , A3=R

0.30 0.455

0.45 0.795
S ,

a1=R
0.15

0.50
S , a2=a3=R

0

0
S .

Set x0=(00) and x1=(0.50.5). (See Fig. 1.)
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Fig. 1.

From the definition of Si, i=1, 2, 3, it follows that

S1(x0)=S2(x1), S2(x0)=S3(x0), and S3(x1)=S21(x0).

Let K be the attractor of the system {S1, S2, S3}. Obviously condition (6) is
satisfied and {x0, x1, S1(x0)} …K. Thus we have

Si(K) 5 Sj(K) ]” for i, j ¥ {1, 2, 3}.

Fix i, j ¥ {1, 2, 3} and denote by Kij the attractor of the system {Si, Sj}.
An argument similar to the above shows that

Si(Kij) 5 Sj(Kij) ]”.

Define

li=inf{||Aix||: ||x||=1}, for i=1, 2, 3

and observe that (1) holds. Then we have

l2i=inf{||Aix||2: ||x||=1}=inf{OAg
i Aix, xP: ||x||=1}.

(Here O · , ·P denotes the scalar product and Ag stands for the adjoint opera-
tor of A.) Hence we obtain (see [Ml])

l2i=min{li, 1, li, 2},

where li, 1, li, 2 denote the eigenvalues of Ai.
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Theorem 3 now gives

dimH K \ s,

where s > 0 satisfies

max
i ] j

ld−si +ld−sj =1

and d is given by (2).
The following numerical results were obtained with Mathematica 3.0.

Namely, in our case we have:

l1 % 0.495984, l2 % 0.155660, l3 % 0.031742

and

d % 0.1695985, s % 0.0234472.
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